Impact of land cover, rainfall and topography on flood risk in West Java

Published in Natural Hazards, 2022

Recommended citation: Rahayu R., Mathias, S. A., Reaney S., Vesuviano G., Suwarman R., Ramdhan A. M. (2023) Impact of land cover, rainfall and topography on flood risk in West Java. Natural Hazards 116, 1735–1758 https://doi.org/10.1007/s11069-022-05737-6

Flooding represents around 32% of total disasters in Indonesia and disproportionately affects the poorest of communities. The objective of this study was to determine significant statistical differences, in terms of river catchment characteristics, between regions in West Java that reported suffering from flood disasters and those that did not. Catchment characteristics considered included various statistical measures of topography, land-use, soil-type, meteorology and river flow rates. West Java comprises 154 level 9 HydroSHEDS sub-basin regions. We split these regions into those where flood disasters were reported and those where they were not, for the period of 2009 to 2013. Rainfall statistics were derived using the CHIRPS gridded precipitation data package. Statistical estimates of river flow rates, applicable to ungauged catchments, were derived from regionalisation relation- ships obtained by stepwise linear regression with river flow data from 70 West Javanese gauging stations. We used Kolmogorov–Smirnov tests to identify catchment characteristics that exhibit significant statistical differences between the two sets of regions. Median annual maximum river flow rate (AMRFR) was found to be positively correlated with plantation cover. Reducing plantation land cover from 20 to 10% was found to lead to a modelled 38% reduction in median AMRFR. AMRFR with return periods greater than 10 years were found to be negatively correlated with wetland farming land cover, suggesting that rice paddies play an important role in attenuating extreme river flow events. Nevertheless, the Kolmogorov–Smirnov tests revealed that built land cover is the most important factor defining whether or not an area is likely to report flood disasters in West Java. This is presumably because the more built land cover, the more people available to experience and report flood disasters. Our findings also suggest that more research is needed to understand the important role of plantation cover in aggravating median annual maximum river flow rates and wetland farming cover in mitigating extreme river flow events.

Full text